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Bahadur slope of the t-statistic for a contaminated normalf

NARASINGA R. CHAGANTY! AND JAYARAM SETHURAMAN?

Old Dominion University and Florida State University

ABSTRACT

In this paper we derive the Bahadur slope of the ¢-statistic based
on a random sample from contaminated normal distribution,
using some results in large deviation theory. We also present a
table of Bahadur slopes at various alternatives at several levels
of contamination.

1. INTRODUCTION. To study robustness of standard tests of location in a normal
model, one generally studies their properties under the Tukey model (see Tukey(1960))

of contaminated normal alternatives, namely, the probability distributions P( 6, 0,0) with
probability density function (pdf)
f(e, 9,0-)(3:) =(1—-¢) ¢(z;0,1) + e ¢(z;0,0) (1)

for 0 < € < 1, where ¢(z;0,0) is the pdf of a normal distribution with mean 6 and

variance 2.

Suppose that X;, X, ..., X, is a random sample from f( . 0 a)(z) and that we wish to
test the null hypothesis § = 0 using the t-statistic T, = X,,/Sy, where X, = 1 % | X;

and S2 = 13" (X; — X,)? The robustness of this ¢-test as measured by Pitman

tResearch partially supported by the U. S. Army research office grant numbers 1DAAL03-91-G-0179,
2DAAH04-93-G-0333. The United States Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon.

AMS 1991 subject classification: Primary 62F03, 62F05, 62G35. Secondary 60F10.
Key words and phrases: Bahadur slope, Large Deviations, Robustness, Tukey model.
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efficiency has been studied in the famous Princeton study by Andrews et al. (1972). In

this paper we derive the large deviation rate of T, under P( ) which allows us to

€

obtain the Bahadur slopes of the t-test under a general aulterna,iz(ilx’ré7 P( ¢, 0,0)" Following
the practice of other authors, we set ¢ equal to 3, and give the Bahadur slopes for various
values of € and 6 in Table 1. This table gives an indication of the region of robustness
of the t-test as measured by the Bahadur slope. The robustness of the t-test, in the
sense of Bahadur efficiency, is gleamed by comparing the slope at the contaminated
distribution P( ¢, 6,3) with the slope at the uncontaminated distribution P(O, 8,3) As
expected, Table 1 shows that there is adequate robustness in a region of small values of
¢ . Furthermore, for a fixed 6 the slope is a decreasing function of € and for a fixed € the

slope is an increasing function of 6.

The exact distribution of 7;? under P( ¢, 0,0) has been derived in Lee and Gurland (1977).
We will derive the large deviation rate of T}, under P( ¢, 0,0) and the Bahadur slope under

the alternative P( ¢, 0,0) in Section 2.
2 b

2. LARGE DEVIATION RATES AND BAHADUR SLOPES. We refer to the excellent mono-
graph of Varadhan (1984) for an introduction to the theory of large deviations and to
the monograph of Bahadur (1971) for the concept of Bahadur slopes and efficiencies.
One needs a strong law under the alternative and a large deviation result under the null
hypothesis to obtain Bahadur slopes. It is easy to see from the usual strong law of large

numbers that

0
\/(1 ——€)+60’2’

with probability one under P( &, 0,0)" We need to obtain a result of the form

T, — m(e,0,0)=

(2)

;lz-log P(e, 0,0) (T 2 m) — —v(m), (3)

where y(m) is continuous in m. The function 7(m) is usually referred to as the large

deviation rate function. It then follows that the Bahadur slope is given by
c(e,8,0) =2~y(m(e,6,0)). (4)
We now proceed with the derivation of v(m). Note that the event {T?? > m?} is equal to

2




the event {W,, > 0} where W is the quadratic form W = X’ AX/n with A=J —nal,
a = m?/(14+m?), I is the identity matrix and J is a matrix of ones. Since the distribution

of T,, is symmetric under P( ¢,0,0) Ve have
v

P(Tan)zéP(WnZO). (5)

(From here onwards, P without a suffix corresponds to the probability under P( €.0 a)')
The left hand side of (5) can be appropriately approximated by using the moment gen-
erating function (mgf) of W, which is given by

M,(t) = Elexp(tW,)]

=0
k n—k
| N—
where A = diag(l,...,1,0%,...,0%). Let p = k/n and ¢ = 1 — p. Using a matrix

determinant formula, (see Appendix), we can show that

M,,(t) = ll—%AkArl/Z

fo(t) + ¢ A St ) R
A f2(t)

where f1(t) = 1+2at, fa(t) = 142at0?, fs(t) = 1-2{(1—a) and fu(t) = 1 —2t0?(1 —a).

Thus the mgf of W, is given by

- () (22

M,(t) = i(Z)u—e)"e("-k)an(t) for t.(p) <t <#'(p), ®)

k=0

where 2.(p), t*(p) are the roots of the quadratic equation p fa(t) fa(t) + ¢ f(t) fa(t) = 0.

From the above formula for the mgf M,(t), we can conclude that the distribution
of W, is a mixture distribution. More precisely, let K be a binomial random variable
with parameters n and (1 —€). Given K = k, let Wy be a random variable with mgf
given by M,,, where p = k/n. From (8) we can see that W, is equal in distribution
to Wyk. This observation coupled with a theorem of Varadhan, see Theorem 2.2 in
Chaganty (1993), is useful to derive the large deviation rate function for the random
variable W,. Theorem 1 below shows that the conditions in Varadhan’s theorem are

indeed satisfied in our problem.




THEOREM 1 Let K be a binomial random variable with parametersn and (1 —¢€). Given
K = k, = np,, let Wy, be a random variable with mgf, My, .(t), defined in (7). If
pn — p then

F.(pn) = -71; log P(Wyk, > 0) — F(p) as n — oo, (9)

where F(p) = —1 [p log fi(t*(p)) + ¢ log f2(t*(p))], ¢ =1 —p.

Proof: Upper bound: By Chebyshev’s inequality it follows that
limnsup -71; log P(War, >20) < lizn%log Mo, (1)
= —-21- [p log fu(t) + ¢ log f2(?)] (10)
for any 0 < t < t*(p). Hence

limsup Fr(p,) = limsup % log P(Wpy, > 0)

. 1
0<t121tt:(p) —3 [p log f1(t) + ¢ log f2(t)]

= F(p) (11)

Lower bound: Let G,,, denote the distribution function of W,;,. Let us introduce

another random variable V,, with the conjugate distribution function given by

exp(z ty,)

Cnn (=) = 37"
npn\tn

dGrp, (:c) (12)

where ¢, = t*(p)(1 — ). Now for any § > 0 we have

n

> = ® = ® ——
PWoao 20) = [ dGiyu(2) = M (t) [ expl=2t,) dGiey(2)
2 Mupo(ta) [ exp(—2ta) dGu, (2)
> My, (tn) exp(—nét,) P(0 <V, < né). (13)
Therefore,
% log P(Wak, 2 0) 2 —log Mo, (1) = 6t + “log P(0 < V, < né). (14)
4




Since p, — p as n — oo it follows from (7)

L tog Moy (1) = = [p Tog A(t"(8) + ¢ og flt" ()] = F(p). (15)

We will now show that the limiting distribution of V,/n is a translated gamma distri-
bution. To find the limiting distribution, we first note that the mgf of V,/n is given by
M, (8) = Myp,(85)/Mny, (t,), where s, = t, 4 s/n. It is easy to check that

. 1/2
M, (s) = M(s) = exp(—sc) (ﬁ#—l—;) as n — 00, (16)

for s < t*(p), where ¢ = [ap/(1 + 2at*(p)) + ago®/(1 + 2at*(p)o?)]. Thus V,/n converges
in distribution to V — ¢, where V is a Gamma random variable with shape parameter

1/2 and scale parameter 1/t*(p). Therefore,
PO<V,/n<8)—> P(c<V<c+6)>0 as n— oo. (17)
From (14), (15) and (17) we get

lim inf Fu(pn) = liminf %log P(W,,. 2 0)

> F(p)—ét(p).

Since § is arbitrary we get liminf, Fn(p,) > F(p). This completes the proof of the

theorem.

We are now in a position to derive the large deviation rate function for 7,,. From

Theorem 1 we have,

1
F.(p.) = - log P(W,. 2 0|K =np,) — F(p). - (18)
whenever p, — p. Note that
1 1
~log P(Wp20) = = log [exp(nFu(p)) dua(p) (19)

where p,, is the distribution of K/n. Since the distribution of K is binomial, it is known

that the sequence of probability measures {u,.} obeys the large deviation principle (see
Varadhan (1984) for the definition) with rate function

h(p) = plog(p/(1 — €)) + qlog(q/¢).

5




Using the theorem of Varadhan, see Theorem 2.2 in Chaganty (1993), and (18) and (19)
it follows that

1

—log P(Wa 2 0) — sup (F(p) = h(p)). (20)

0<p<1

From (5) and (20) we get

L log P(T, > m) — —y(m)
n

where y(m) = infocp<1[—F(p) + A(p)]-

The rate function 4(m) can easily be computed numerically using Newton-Raphson 1
method. In Table 1 we present the Bahadur slope, ¢(¢, 8, o) = 2(m(e, 8, ¢)), for different
values of € and 6 when o = 3. Note that a large value of ¢(¢, 8, o) indicates that the test i

statistic T}, requires smaller sample size to detect that particular alternative.

Table 1. Slope of the t-statistic c(¢, 6, o), for the contaminated normal
model, when o = 3.

e\0| 025 0.50 1.0 1.5 2.0 2.5 3.0

; 0.00 | 0.06066 | 0.22314 | 0.69314 | 1.17866 | 1.60944 | 1.98100 | 2.30258

0.05 [ 0.04488 | 0.17380 | 0.56738 | 0.99566 | 1.39154 | 1.74208 | 2.05046

0.15 | 0.02866 | 0.11598 | 0.42936 | 0.79694 | 1.14852 | 1.46908 | 1.75732

0.25 | 0.02090 | 0.08422 | 0.33264 | 0.67160 | 1.00634 | 1.31238 | 1.58918

REMARK 1 It is possible to derive, in a similar manner, the Bahadur slope of the -

statistic, for a random sample of n observations with common pdf given by f(z) =

|
|
|
|
|
0.10 | 0.03508 | 0.14056 | 0.48860 | 0.87952 | 1.24944 | 1.58306 | 1.88092
6



L mié(z;0,0), YL m=1,and m; > 0 for all L > 1. In this case the multinomial
distribution plays the role of the binomial distribution in the derivation of the slope.
More generally, using the results of Chaganty (1993), we can also establish the large

deviation principle for the t-statistic for this model.

3. ApPPENDIX. In (7) we have used the following determinant formula. Let

k (n—F)
S~T”+CJV cJ ]
- eJ dI+eJ)’

where b, ¢, d and e are constants, and as before, I is the identity matrix and J is the

matrix of ones. Then we can verify that

| S| =bFd*» (1+%+(—’3—:d—k—)—e). (21)

To obtain the simplification in equation (7), we use the above formula (21) with the

2 2t o?
substitutions b = f1(t), d = fa(t), ¢ = - and e = — na .
Department of Mathematics and Statistics Department of Statistics
0Old Dominion University Florida State University
Norfolk, Virginia 23529 Tallahassee, Florida 32306
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